
SAMGRID WEB SERVICES 

S. Veseli, FNAL, Batavia, IL 60510, USA 

Abstract 
 

SAMGrid is a distributed (CORBA-based) HEP data 
handling system presently used by three running 
experiments at Fermilab: D0, CDF and MINOS. User 
access to the SAMGrid services is provided via Python 
and C++ client APIs, which handle the low-level CORBA 
calls. Although the use of SAMGrid API's is fairly 
straightforward and very well documented, in practice 
SAMGrid users are facing numerous installation and 
configuration issues. 

SAMGrid Web Services have been designed to allow 
easy access to the system by using standard web service 
technologies and protocols (SOAP/XML, HTTP). In 
addition to hiding complexity of the system from users, 
these services eliminate the need for the proprietary  
CORBA-based clients, and also significantly simplify 
client installation and configuration. 

We present here the architecture and design of the 
SAMGrid Web Services, and describe the functionality 
that they currently offer. In particular, we discuss various 
dataset and cataloguing services, as well as cover in more 
details the techniques used for delivering data files to end 
users. We also discuss service testing and performance 
measurements, deployment plans, as well as plans for 
future development. 

INTRODUCTION 
 
SAMGrid [1] is a general data handling system 

designed to work for high energy physics experiments 
with peta-byte sized datasets and widely distributed 
production and analysis facilities. After several years of 
operations*, SAMGrid has evolved to be both robust and 
fault tolerant system, with a wide range of services 
offered to its users. Even though at this point the 
SAMGrid software is in a fairly mature state, there is still 
room for improvement, most notably in the areas of 
monitoring, software installation, configuration, and 
client access. 

In this paper we describe efforts to offer additional 
means of accessing the system by implementing a web 
service† layer on top of the existing SAMGrid 
infrastructure. We present the architecture of the 
SAMGrid Web Services [3], and describe their present 
functionality, such as various cataloguing and dataset 
services, as well as mechanisms for delivering data to end 
users. We discuss service testing and deployment plans, 
and outline possible directions for future development. 
                                                           
*
 The system is currently used by three running experiments at Fermilab: 

D0, CDF and MINOS. 
†
 For specifications of various web service technologies and protocols 

see Ref. [2]. 

EXISTING SAMGRID CLIENT ACCESS 
 
As already mentioned, SAMGrid offers a wide variety 

of services, such as job management, data management, 
data transfer and storage, process accounting, etc. All 
services which require database access‡ are encapsulated 
within the SAMGrid DB Server [4]. Examples of those 
are various cataloguing and dataset services. On the other 
hand, services involving data management, transfer and 
storage are provided by a set of SAMGrid Station 
Servers§.  

The primary means of accessing the SAMGrid system 
is via Python [5] and C++ [6] client APIs, but some of the 
cataloguing and dataset services are also provided by CGI 
scripts [7] and Java Servlets [8,9]. Python API 
incorporates all of the SAMGrid functionality, including 
various administrative and monitoring interfaces.  It is 
distributed as a frozen binary with accompanying 
necessary shared object libraries.** This technique has the 
advantage that users have full access to all of the 
SAMGrid interfaces, as well as to the standard Python 
modules, without worrying about possible compatibility 
issues related to a specific version of Python installed on 
a given system.  It is also worth mentioning that 
SAMGrid command line interfaces are built on top of the 
Python API. On the other hand, SAMGrid C++ API has 
much less functionality and is targeted for use in 
experiments’ C++ reconstruction and analysis software. 
Similar to the Python API, the C++ API is distributed as 
self-contained set of libraries and header files. 

Since the SAMGrid software uses CORBA [11] for 
communication between different components of the 
system, both APIs handle the low level CORBA calls, as 
well as utilize similar techniques for hiding generated 
CORBA structs from users by wrapping them into 
corresponding Python/C++ classes. The fact that the 
CORBA knowledge is not required makes the usage of 
SAMGrid APIs fairly straightforward.  

Nevertheless, SAMGrid users are still facing non-trivial 
software installation and configuration issues. Besides an 
obvious issue of the SAMGrid API distributions being 
tied to a particular operating system††, the client software 
also has to be properly configured before usage. At 
                                                           
‡
 The SAMGrid system relies on a centralized Oracle RDBMS. 

§
 Station denotes a particular set of hardware resources that are managed 

by SAMGrid servers. End users request a set of files by submitting a 
SAMGrid project to one of the SAMGrid stations. Their applications are 
served input files by the project manager (one of the station servers). 
**

 SAMGrid distribution of the Python API utilizes cx_Freeze utilities 
[10]. 
†† At the moment Python API is distributed for Linux and SunOS, while 
the C++ API  is distributed for Linux only. 



minimum, one has to know the stringified IOR‡‡ for the 
SAMGrid naming service, as well as the name of the 
appropriate production DB Server. In the worst case 
scenario, which involves retrieving files, one also has to 
install and configure various file transfer utilities used by 
SAMGrid, as well as worry about possible firewall 
problems.  These issues usually do not represent a major 
obstacle for SAMGrid access from machines or clusters 
on which the software was installed and configured by the 
designated SAMGrid administrators. However, they make 
it diff icult for regular users to setup their desktops or 
laptops for accessing SAMGrid via the distributed APIs.  

SAMGRID WEB SERVICES 

Service Architecture and Implementation 
 
In order to rectify this problem, we have decided to 

implement a web service layer on top of the existing 
SAMGrid infrastructure (see Figure 1). The basic 
architecture is rather simple: the web service container 
receives client SOAP requests, and translates those into 
corresponding CORBA calls using SAMGrid Python API. 
Once the result is received, SOAP response is generated 
and sent back to the client. The web service approach 
hides complexity of the system from users, as all of the 
necessary software installation and configuration is done 
behind the scenes on the machine hosting the service. On 
the client side the URL of the service description file 
(WSDL) is the only thing needed.  

We have chosen Python as the implementation 
language for the SAMGrid Web Services. This allowed us 
to easily utilize the existing functionality in the SAMGrid 
Python API, which considerably increased speed of the 
service development. We also decided to use SOAPpy 
[12], a Python web service package. SOAPpy takes care 
of marshalling and un-marshalling SOAP messages, as 
well as of processing WSDL files. In addition to that, it 
comes with a reliable threaded service container, which 
greatly simplifies the service deployment.   

SAMGrid WSDL interfaces have been designed to 
closely match the CORBA IDL interfaces provided by the 
different components of the system. We have organized 
the implemented WSDL interfaces in the following web 
services [2]: 

• Dataset Service 
• Dimension Service 
• DataFile Service 
• Station Service 
• Project Service 

Although the functionality provided so far in the above 
services is not complete (for example, no administrative 
interfaces have been implemented), it is sufficient for 
most of the regular SAMGrid usage: retrieving file 
metadata and replica locations, searching for f iles based 
on specified constraints, defining datasets,  and retrieving 
                                                           
‡‡

 IOR (or interoperable object reference), is a reference to a CORBA 
object. 

individual files or the whole datasets.  In terms of user 
functionality, the most notable missing feature is the 
ability to declare and store new files into the system. 
 

����������

��

�	
	��
��
������	�

��

� �����������

�������	��


������

��������� ���

��������

����

��������

����
	

��������

�	
	��


����

���������	���	����	��������	����	

 
 
Figure 1: SAMGrid Web Services DB Architecture. 

 
 
File Delivery Service 
 

As already mentioned, in most cases implementation of 
the WSDL interfaces has been fairly straightforward and 
mainly involved translation between CORBA and SOAP.   
However, the delivery of data files was more complex, on 
both server and client side. Since the technique of 
transferring files as MIME attachments to SOAP response 
messages is limited to small files§§, we have established a 
protocol for retrieving data in small chunks. 

User who wants a set of files delivered to his/her 
machine sends initial SOAP request to the Station Web 
Service for establishing a file or dataset stream. This 
requests contains the information (e.g., set of file 
metadata constraints) that can be resolved into an explicit 
list of files. The Station Web Service verif ies the request 
and sends back a response containing the stream id, as 
well as information relevant to the data that was 
requested, such as the number and of files and the size of 
the entire dataset. At the same time, the service makes a 
request for f ile delivery to one of the designated 
SAMGrid station servers. As files arrive in its cache, the 
station server sends notifications to the Web Service 
CORBA listener, and the Web service retrieves them into 
its own cache area. Once they receive the initial response, 
clients use the assigned file stream id to request data in 
                                                           
§§

 Our tests indicated that including binary SOAP attachments larger 
than about 100MB was not practical. 



chunks, which have typical size of 1-10MB. Every chunk 
of data is accompanied by information (such as the chunk 
number and size, file checksum, etc.) needed for client to 
easily assemble the file and verify its contents.   

The advantages of the this technique are obvious: there 
is no limit on the size of dataset that can be transferred, 
the amount of encoded binary data that is transferred for 
each request is small and easily handled by both web 
service and its client, etc. On the other hand, some care 
has to be taken on the client side so that files are 
assembled correctly.   

PERFORMANCE MEASUREMENTS 
 

For testing and performance measurements we used the 
D0 development environment. The Oracle database 
utilized an 8-CPU (400MHz UltraSPARC II processors) 
Sun machine with 4GB of memory, while the DB Server 
was running on a 4-CPU Linux machine (2.4GHz Xeon 
processors) with 3.5GB of memory. The web services 
were deployed on a dual Athlon MP 2000+ Linux 
machine with 1GB of memory, and a small cluster of 
similar machines was utilized for our test clients. During 
our testing there was no other significant database activity 
that could considerably affect our results. 

Web Service Overhead

0

1

2

3

4

5

6

7

8

0 5000 10000 15000 20000

Dataset size

W
eb

 s
er

vi
ce

 o
ve

rh
ea

d
 [

se
co

n
d

s]

 Figure 2: Web Service overhead as a function of the 
returned dataset size. The numbers shown correspond 
to about 12% of the total response time. 

 
In order to understand the overhead associated with the 

additional SOAP call that has to be made, as well as with 
translating results returned by the DB Server into the 
corresponding SOAP/XML struct, we have performed a 
series of identical back-to-back SOAP queries, and 
measured the time between sequential DB Server calls 
which Web Service made on behalf of its client. In Figure 

2 we show the average web service overhead as a 
function of the returned dataset size (i.e., the number of 
file names in the returned SOAP/XML list). The results 
shown were obtained with a single Web Service client 
and 10 sequential calls for each dataset. As expected, the 
time necessary for additional SOAP processing grows 
linearly with the size of the SOAP message. The numbers 
shown in Figure 2 correspond to about 12% of the total 
response time. Since the size of the returned SOAP struct 
is directly proportional to the size of the corresponding 
CORBA struct, the relative overhead time does not 
change with the type of the query used. However, speed 
of the machine hosting the web service, as well as of the 
machine running the client, plays a major role for time 
required to process SOAP messages. We also note that 
usually the query response time depends on a number of 
factors like the ongoing database activity, machine and 
network load, etc., so that in most cases the observed 12% 
Web Service overhead would fall within variation of the 
direct DB Server query timing.  For example, in the case 
of a query returning a list of about 2500 files, response 
times for 10 direct DB Server calls were in the range of 
8.78 to 9.82 seconds, with the average of 9.24 seconds. 
The same query against the Web Service had response 
times between 9.04 and 9.88 seconds, with the average of 
9.32 seconds for 10 calls.     

Our second series of tests had a goal of understanding 
and comparing the Web Service and the DB Server 
performance under load of a number of simultaneous 
clients. The DB Server was configured to use 5 
connections to the database. Each client performed a set 
of queries, such as retrieving file metadata, retrieving a 
list of file locations, or a list of files in a given dataset. 
The same set of queries (unit of client work) was repeated 
10 times. In Figure 3 we displayed our results for the 
average service response time per unit of client work as a 
function of the number of simultaneous clients.  For a 
single client, the effects of SOAP overhead are clearly 
visible. In the case of two clients, the average response 
time goes down by a factor of two for both DB Server and 
Web Service. This is easily explained by the fact that the 
DB Server had multiple connections to the database, and 
therefore all queries could be executed in parallel. For 
three simultaneous clients the DB Server performance 
slightly deteriorates, which is an effect of saturating the 
number of available database connections.***  However, i t 
is interesting to note that the Web Service performance 
did not deteriorate as much, and for more than three 
clients the Web Service using the DB Server on behalf of 
its clients actually performed slightly better than the DB 
Server alone. This behaviour is a result of the DB Server 
architecture: the pool of available database connections is 
shared amongst all DB server proxies, and each DB 
Server proxy has to acquire the database connection 
before it can execute its query. All of the DB server direct 
                                                           
***

 Since each unit of client work in our test actually required two 
different DB Server proxies, and each DB Server proxy requires a 
database connection, 5 available database connections were saturated 
with only three clients. 



clients have dedicated proxies. On the other hand, the 
Web Service maintains a pool of DB server proxies, 
which are shared amongst all if its clients. Since this 
mode of operation results in more of the DB Server proxy 
re-use, it also carries less overhead related to the database 
connection context switch.  

Service Response Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10

Number of simultaneous clients

S
er

vi
ce

 r
es

p
o

n
se

 t
im

e 
[s

ec
o

n
d

s]

DB Server

Web Service

 
Figure 3: Average service response time per client 
unit of work (set of several different queries) as a 
function of the number of simultaneous clients. 

 
We have repeated the load test using DB Servers 

running on different machines. Although the overall scale 
was different (more in favour of the Web Service for less 
powerful machine hosting the DB Server), the trend was 
always the same as the one shown on the Figure 3. It is 
also worth noting that we performed the same test with 
100 simultaneous clients, and we have not experienced 
any problems with the Web Service (SOAPpy) container, 
nor we have seen any performance degradation. The 
average service response time per unit of work was 1.12 
seconds for the Web Service, and 1.16 seconds for the DB 
Server alone.  

In addition to the above tests, we have also measured 
performance of our file delivery service. Mostly due to 
encoding needed to make files suitable for transfer over 
HTTP, we observed data transfer rates of about factor of 2 
slower than using the secure copy protocol, and up to 5 
times slower than using the kerberized rcp.     

FUTURE DEVELOPMENT 
 
Although the current functionality offered by the 

SAMGrid Web Services is sufficient for most of the 
regular system usage, several important pieces are still 

missing. Most notably, the ability for users to declare and 
store new files into the system is not there. In addition to 
the services that have to be added, some work is also 
needed to improve performance and insure reliability of 
the file transfer service.  

CONCLUSIONS 
 
In this paper we have described the architecture, design 

and implementation of the new SAMGrid Web Services. 
These services offer additional means of accessing the 
system without complex installation and configuration of 
the standard SAMGrid software.  

We have also discussed service testing and 
performance measurements. Our results show very good 
performance under various load conditions and with 
different usage patterns.    

At this time the SAMGrid Web Services have been 
deployed in production for MINOS [13], and are being 
tested for use at D0.  

 

ACKNOWLEDGEMENTS 
We would like to thank Fermilab Computing Division 

for its ongoing support of the SAMGrid project. We 
would also like to thank everyone at D0, CDF and 
MINOS who has contributed to SAMGrid. This project is 
sponsored by DOE contract No. DE-AC02-76CH03000. 

REFERENCES  
[1] http://projects.fnal.gov/samgrid 
[2]  http://www.w3.org 
[3]  http://d0db.fnal.gov/sam_web_services 
[4]  L. Loebel-Carpenter et al., “The SAMGrid Database 

Server Component: Its Upgraded Infrastructure and 
the Future Development Plan”, Proceedings of the 
Computing in High-Energy Physics (CHEP '04), 
Interlaken, Switzerland, 27 Sep - 1 Oct 2004. 

[5]  http://d0db.fnal.gov/sam_pyapi 
[6]  http://d0db.fnal.gov/sam_cpp_api 
[7]  http://d0db-prd.fnal.gov/sam_data_browsing 
[8]  http://dbb.fnal.gov:8520/cdfr2  
     (CDF Database Browser) 
[9] http://d0db-prd.fnal.gov:19655/sam_dataset_editor    
      (SAMGrid Dataset Editor) 
[10]  http://sourceforge.net/projects/cx-freeze 
[11]  http://www.omg.org 
[12]  http://sourceforge.net/projects/pywebsvcs 
[13] A. Kreymer et al., “Lightweight deployment of the 

SAM grid data handling system to new experiments” , 
this Conference Proceedings. 

 


